2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008

Yambo: An ab initio tool for excited state calculations

Authors: Andrea Marini, Conor Hogan, Myrta Grüning, Daniele Varsano

Ref.: Comp. Phys. Comm. 180, 1392-1403 (2009)

Abstract: yambo is an ab initio code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe–Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible I/O procedures and is interfaced to several publicly available density functional ground-state codes.

DOI: 10.1016/j.cpc.2009.02.003