\documentclass{article} \usepackage[latin1]{inputenc} \usepackage{fullpage} \begin{document} \begin{itemize} \section*{Books} \subsection*{Chapters of Books} \item[1] ``Neutron star equation of state: identifying hadronic matter characteristics'', Constança Providência, Tuhin Malik, Milena Bastos Albino, Márcio Ferreira, Talyor \& Francis {\bf accepted} (2024). \item[2] ``Constraining the Nuclear Matter EoS from the Properties of Celestial Objects'', Bijay Kumar Agrawal and Tuhin Malik, Nuclear Structure Physics, CRC Press. {\bf Chapter 14}, 317 (2021). \section*{Papers} \subsection*{International Journals} \item[3] ``Bayesian evaluation of hadron-quark phase transition models through neutron star observables in light of nuclear and astrophysics data'', Debanjan Guha Roy, Anagh Venneti, Tuhin Malik, Swastik Bhattacharya, Sarmistha Banik, Phy. Lett. B (PLB) {\bf Volume 859}, 139128 (2024). \item[4] ``Analysis of Neutron Star f-mode Oscillations in General Relativity with Spectral Representation of Nuclear Equations of State'', Debanjan Guha Roy, Tuhin Malik, Swastik Bhattacharya, Sarmistha Banik, Astrophys.J. (APJ) {\bf 968}, 124 (2024). \item[5] ``Implications of comprehensive nuclear and astrophysics data on the equations of state of neutron star matter'', SMA Imam, T. Malik, C. Providencia, B. Agrawal, Phys. Rev. D {\bf 109 (10)}, 103025 (2024). \item[6] ``Astrophysics and nuclear physics informed interactions in dense matter: Inclusion of PSR J0437-4715'', T Malik, V Dexheimer, C Providência, Phys. Rev. D {\bf 110(4)}, 043042 (2024). \item[7] ``Nambu-Jona-Lasinio description of hadronic matter from a Bayesian approach'', KD Marquez, T Malik, H Pais, DP Menezes, C Providência, Phys. Rev. D {\bf 110(6)}, 063040 (2024). \item[8] ``Hybrid star properties with the NJL and mean field approximation of QCD models: A Bayesian approach'', Milena Albino, Tuhin Malik, Márcio Ferreira, Constança Providência, Phys.Rev.D {\bf 110}, 083037 (2024). \item[9] ``Constraining the high-density behavior of nuclear symmetry energy with direct Urca processes'', Olfa Boukari, Tuhin Malik, Aziz Rabhi, Constança Providência, Phy. Rev. C (PRC) {\bf (accepted)} (2024). \item[10] ``Towards Uncovering Dark Matter Effects on Neutron Star Properties: A Machine Learning Approach'', Prashant Thakur, Tuhin Malik, T.\,K. Jha, Particles {\bf 7}, 80-95 (2024). \item[11] ``Calibrating global behaviour of equation of state by combining nuclear and astrophysics inputs in a machine learning approach'', Sk Md Adil Imam, Prafulla Saxena, Tuhin Malik, N.\,K. Patra, B.\,K. Agrawal, Phy. Rev. D (PRD) {\bf (accepted)} (2024). \item[12] ``Exploring robust correlations between fermionic dark matter model parameters and neutron star properties: A two-fluid perspective'', P. Thakur, T. Malik, A. Das, T.\,K. Jha, C. Providência, Phys. Rev. D {\bf 109 (4)}, 043030 (2024). \item[13] ``Unified neutron star equations of state calibrated to nuclear properties'', Tuhin Malik, Helena Pais, Constança Providência, Astron.Astrophys. (A\&A) {\bf 689}, A242 (2024). \item[14] ``Non-radial oscillation modes in hybrid stars: consequences of a mixed phase'', Deepak Kumar, Hiranmaya Mishra and Tuhin Malik, J. Cosmol. Astropart. Phys. {\bf 02}, 015 (2023). \item[15] ``Unveiling a universal relationship between the f(R) parameter and neutron star properties'', K. Nobleson, Sarmistha Banik, and Tuhin Malik, Phys. Rev. D {\bf 107}, 124045 (2023). \item[16] ``Robust universal relations in neutron star asteroseismology'', D. Kumar, T. Malik, H. Mishra, C. Providencia, Phys. Rev. D {\bf 108 (8)}, 083008 (2023). \item[17] ``Realizing the potential of deep neural network for analyzing neutron star observables and dense matter equation of state'', A Thete, K Banerjee, T Malik, Phys. Rev. D {\bf 108 (6)}, 063028 (2023). \item[18] ``Spanning the full range of neutron star properties within a microscopic description'', Tuhin Malik, Márcio Ferreira, Milena Bastos Albino, Constança Providência, Phys. Rev. D {\bf 107}, 103018 (2023). \item[19] ``Decoding neutron star observations: Revealing composition through Bayesian neural networks'', Valéria Carvalho, Márcio Ferreira, Tuhin Malik, Constança Providência, Phys. Rev. D {\bf 108}, 4 (2023). \item[20] ``Dark matter admixed neutron star properties in light of gravitational wave observations: A two-fluid approach'', Arpan Das, Tuhin Malik, and Alekha C. Nayak, Phys. Rev. D {\bf 105}, 123034 (2022). \item[21] ``The neutron star outer crust equation of state: a machine learning approach'', Murarka Utsav Anil, Kinjal Banerjee, Tuhin Malik, Constança Providência, J. Cosmol. Astropart. Phys. {\bf 01}, 045 (2022). \item[22] ``Nearly model-independent constraints on dense matter equation of state in a Bayesian approach'', N.\,K. Patra, Sk Md Adil Imam, B.\,K. Agrawal, Arunava Mukherjee, Tuhin Malik, Phys. Rev. D {\bf 106}, 043024 (2022). \item[23] ``Bayesian reconstruction of nuclear matter parameters from the equation of state of neutron star matter'', Sk Md Adil Imam, N. K. Patra, C. Mondal, Tuhin Malik, and B. K. Agrawal, Phys. Rev. C {\bf 105}, 015806 (2022). \item[24] ``Bayesian inference of signatures of hyperons inside neutron stars'', Tuhin Malik and Constança Providência, Phys. Rev. D {\bf 106}, 063024 (2022). \item[25] ``Inferring the nuclear symmetry energy at suprasaturation density from neutrino cooling'', Tuhin Malik, B. K. Agrawal, and Constança Providência, Phys. Rev. C (Letter) {\bf 106}, L042801 (2022). \item[26] ``Inner crust equations of state for CompOSE'', Tuhin Malik, Helena Pais, Eur. Phys. J. A {\bf 58}, 154 (2022). \item[27] ``Relativistic Description of Dense Matter Equation of State and Compatibility with Neutron Star Observables: A Bayesian Approach'', Tuhin Malik, Márcio Ferreira, B.\,K. Agrawal, Constança Providência, Astrophys. J. (ApJ) {\bf 930}, 17 (2022). \item[28] ``Constraining nuclear matter parameters from correlation systematics: a mean-field perspective'', B.\,K. Agrawal, Tuhin Malik, J.\,N. De, S.\,K. Samaddar, The European Physical Journal Special Topics {\bf 230}, 517-542 (2021). \item[29] ``Tidal deformability of neutron stars with exotic particles within a density dependent relativistic mean field model in R-squared gravity'', K. Nobleson, Tuhin Malik, Sarmistha Banik, Journal of Cosmology and Astroparticle Physics (JCAP) {\bf 08}, 12 (2021). \item[30] ``Equation-of-state Table with Hyperon and Antikaon for Supernova and Neutron Star Merger'', Tuhin Malik, Sarmistha Banik, Debades Bandyopadhyay, The Astrophysical Journal (APJ) {\bf 910}, 96 (2021). \item[31] ``New equation of state involving Bose–Einstein condensate of antikaon for supernova and neutron star merger simulations'', Tuhin Malik, Sarmistha Banik, Debades Bandyopadhyay, Eur. Phys. J.: Spec. Top. {\bf 230}, 561-566 (2021). \item[32] ``Empirical constraints on the high-density equation of state from multimessenger observables'', Márcio Ferreira, M. Fortin, Tuhin Malik, B. K. Agrawal, and Constança Providência, Phys. Rev. D {\bf 101}, 043021 (2020). \item[33] ``An Equation of State for Magnetized Neutron Star Matter and Tidal Deformation in Neutron Star Mergers'', N. K. Patra, Tuhin Malik, Debashree Sen, T. K. Jha, and Hiranmaya Mishra, The Astrophysical Journal (ApJ) {\bf 900}, 49 (2020). \item[34] ``Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters'', Tuhin Malik, B. K. Agrawal, Constança Providência, and J. N. De, Phys.Rev.C (Rapid Communication) {\bf 102}, 052801 (2020). \item[35] ``Confronting nuclear equation of state in the presence of dark matter using GW170817 observation in relativistic mean field theory approach'', Arpan Das, Tuhin Malik, and Alekha C. Nayak, Phys. Rev. D Open Access) {\bf 99}, 043016 (2019). \item[36] ``Tides in merging neutron stars: consistency of GW170817 event with properties of finite nuclei'', Tuhin Malik, B. K. Agrawal, J.\,N. De, S.\,K. Samaddar, C. Providencia, C. Mondal, T.\,K. Jha, Phys. Rev. C (Rapid Communication) {\bf 99}, 052801 (2019). \item[37] ``Nucleon effective mass and its isovector splitting'', Tuhin Malik, C. Mondal, B. K. Agrawal, J. N. De, and S. K. Samaddar, Phys. Rev. C {\bf 98}, 064316 (2018). \item[38] ``GW170817: constraining the nuclear matter equation of state from the neutron star tidal deformability'', Tuhin Malik, N. Alam, M. Fortin, C. Providência, B. K. Agrawal, T. K. Jha, Bharat Kumar, S. K. Patra, Phys. Rev. C {\bf 98}, 035804 (2018). \item[39] ``Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model'', Tuhin Malik, Kinjal Banerjee, T. K. Jha, and B. K. Agrawal, Phys. Rev. C {\bf 96}, 035803 (2017). \item[40] ``Spectroscopy of low-lying states in odd-odd 146Eu'', T. Bhattacharjee, D. Banerjee, S. K. Das, S. Chanda, Tuhin Malik, A. Chowdhury, P. Das, S. Bhattacharyya, and R. Guin, Phys. Rev. C {\bf 88}, 014313 (2013). \section*{Communications} \subsection*{Invited} \item[41] ``Unraveling neutron stars´ properties: Exploring the Nuclear Equation of State, Hyperons, and Compatibility with pQCD'', Malik, T., NIT, Rourkela, India, 7 July (Online). (2023). \item[42] ``Unveiling Neutron Star Composition and Observables: Comprehensive Study using Deep Bayesian Neural Networks'', Malik, T., European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), in Trento, Italy, 10/10/2023. (In person). (2023). \item[43] ``Spanning the full range of neutron star properties within a microscopic description'', Malik, T., Presented in AAPCOS-2023, 26 January, SINP India (in person) (2023). \item[44] ``Learning about high density nuclear matter equation of state from neutron stars'', Constança Providência, Márcio Ferreira, Tuhin Malik, Workshop "From holography to machine learning" (Helsinki, Finland) (2022). \subsection*{Oral} \item[45] ``Inferring the dense matter equation of state from a minimal number of constraints'', Tuhin Malik, Workshop at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT) on "Neutron stars as multi-messenger laboratories for dense matter”, Italy, 20-24, June (2022). \section*{Other} \item[46] ``Public dataset: Relativistic description of dense matter equation of state and compatibility with neutron star observables: a Bayesian approach'', Tuhin Malik, Márcio Ferreira, B. K. Agrawal, Constanca Providencia, Zenodo (2022). \end{itemize} \end{document}