2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008
Composition-, temperature-, and field- driven magnetic phase transitions in Bi0.9Ca0.1Fe1-xMnxO3 multiferroics
Authors: V. A. Khomchenko; M. Das; J. A. Paixão
Ref.: J. Magn. Magn. Mater. 614, 172703 (2025)
Abstract: A magnetometric study of Bi0.9Ca0.1Fe1-xMnxO3 (0.3 ≤ x ≤ 0.5) compounds was conducted over broad temperature and field ranges to clarify the impact of Mn substitution on the magnetic properties of Ca2+-doped bismuth ferrite-based multiferroics near the polar-antipolar phase boundary. Room-temperature X-ray diffraction measurements confirm the stability of the polar rhombohedral R3c structure up to x = 0.4, with a transition to the antipolar orthorhombic Pnam phase occurring through a mixed structural state at x≈ 0.45. Magnetic measurements of rhombohedral-structure samples reveal an evolution in magnetization behavior, indicative of a transformation from the cycloidal spin order, characteristic of low-doped bismuth ferrites, to a collinear antiferromagnetic arrangement as Mn content increases. Magnetic field modifies the collinear antiferromagnetic structure towards a canted antiferromagnetic one. The threshold field for the metamagnetic transformation decreases with decreasing temperature and increasing Mn concentration.