2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008

Stress Determination by IHD in Additively Manufactured Austenitic Steel Samples: A Validation Study

Authors: Nobre, J.P.; Marques, M.J.; Batista, A.C.

Ref.: Metals 15(5), 485 (2025)

Abstract: The present work aims to verify whether the incremental hole-drilling technique (IHD), a widely accepted technique, is suitable for determining residual stresses in AISI 316L samples obtained by selective laser melting (SLM). The thermo-mechanical effects of cutting during the application of this technique can induce unwanted residual stresses due to the relatively low thermal conductivity of this material, leading to erroneous results. To accomplish this aim, a hybrid experimental-numerical method was implemented to analyze the ability of IHD to determine an imposed stress state. Experimentally, samples were subjected to a tensile calibration stress using a horizontal tensile test machine. To eliminate pre-existing residual stress, the samples were subjected to differential loads, instead of absolute ones. In this way, experimental strain-depth relaxation curves related to the imposed calibration stress were obtained. Based on the experimental data, IHD was numerically simulated using the finite element method. Numerical strain-depth relaxation curves, related to the same calibration stress used in the experimental study, were obtained. The comparison between the experimental and numerical strain-depth relaxation curves, as well as the stresses calculated using the so-called integral method for determining stresses via IHD, shows that IHD is a suitable technique for measuring residual stresses in additively manufactured AISI 316L samples.

DOI: 10.3390/met15050485