2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008

Advanced spinel ferrite Co0.6Zn0.3Ca0.1Fe2O4 nanoparticles: Structural, optical, and electrical insights for functional applications

Authors: Messaoudi, A.; Omri, A.; Hamdaoui, N.; Benali, A.; Ajjel, R.; Graca, M.F.P.; Costa, B.F.O.; Khirouni, K.

Ref.: J. Aust. Ceram. Soc. Early Access (2025)

Abstract: The current investigation delves into the properties of Co0.6Zn0.3Ca0.1Fe2O4 spinel ferrite produced using the sol-gel technique. The analysis encompassed structural, optical, electrical, and dielectric aspects. Crystallographic evaluations via X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) unveiled the cubic spinel structure of this sample within the FdZm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Fd\overline{\mathfrak{Z} }m$$\end{document} space group. Structural parameters such as crystallite size, lattice constant, X-ray density, porosity, and specific surface area were determined from the X-ray diffraction data. The crystallite size, calculated using the Scherrer formula for the diffraction peak corresponding to the (311) plane, was found to be 46.6 nm. In optical exploration using UV-visible spectroscopy, the determined bandgap (Eg = 1.61 eV) underscores the compound“s potential for optoelectronic applications. Parameters like Urbach energy, extinction coefficient (k), penetration depth (delta), and refractive index (n) were derived from absorption and reflectance measurements. The dispersion energy parameters were calculated from the Wemple-Didomeni corelation and the Cauchy parameters were evaluated from the variation of the refractive index. Dielectric properties, including complex impedance, complex permittivity, dielectric loss (tan delta), and AC conductivity (sigma ac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\upsigma }_{\text{ac}}$$\end{document}), were analyzed for the synthesized nanoparticles over a frequency range of 100 Hz to 3 MHz and a temperature range of 300 K to 500 K. Electrical examinations showcased a rise in conductivity with escalating temperature for the nanoferrite materials. This behavior adhered to Jonscher“s law sigma ac=sigma dc+A omega s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\upsigma }_{\text{ac}}={\upsigma }_{\text{dc}}+\text{A}{\upomega }<^>{\text{s}}\right)$$\end{document}, where, the temperature-dependent behavior of the exponent(s) suggests that the Correlated Barrier Hopping (CBH) model is appropriate for describing the conduction process. Additionally, activation energies calculated from the electrical conductivity and from the imaginary part of the impedance confirmed the involvement of identical charge carriers in both the conduction and relaxation processes. These comprehensive analyses provide a detailed understanding of the multifaceted properties of the synthesized Co0.6Zn0.3Ca0.1Fe2O4 spinel ferrite, showcasing its potential in diverse applications.

DOI: 10.1007/s41779-025-01235-7