2026 | 2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008
CHEOPS observations confirm nodal precession in the WASP-33 system
Authors: Smith, A.M.S.; Csizmadia, Sz.; Van Grootel, V.; ...; Correia, A.C.M.; et al.
Ref.: Astron. Astrophys. 693, A128 (2025)
Abstract: Aims. We aim to observe the transits and occultations of WASP-33 b, which orbits a rapidly rotating δ Scuti pulsator, with the goal of measuring the orbital obliquity via the gravity-darkening effect, and constraining the geometric albedo via the occultation depth. Methods. We observed four transits and four occultations with CHEOPS, and employ a variety of techniques to remove the effects of the stellar pulsations from the light curves, as well as the usual CHEOPS systematic effects. We also performed a comprehensive analysis of low-resolution spectral and Gaia data to re-determine the stellar properties of WASP-33. Results. We measure an orbital obliquity 111.3‑0.7+0.2 degrees, which is consistent with previous measurements made via Doppler tomography. We also measure the planetary impact parameter, and confirm that this parameter is undergoing rapid secular evolution as a result of nodal precession of the planetary orbit. This precession allows us to determine the second-order fluid Love number of the star, which we find agrees well with the predictions of theoretical stellar models. We are unable to robustly measure a unique value of the occultation depth, and emphasise the need for long-baseline observations to better measure the pulsation periods.


