2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008

An advanced approach to control the electro-optical properties of LT-GaAs-based terahertz photoconductive antenna

Authors: A.M. Buryakov, M.S. Ivanov, S.A. Nomoev, D.I. Khusyainov, E.D. Mishina, V.A. Khomchenko, I.S. Vasil’evskii, A.N. Vinichenko, K.I. Kozlovskii, A.A. Chistyakov, J.A. Paixão

Ref.: Mater. Res. Bull. 122, 110688 (2020)

Abstract: This work reports on an advanced approach to the design of THz photoconductive. antenna (PCA). The LT-GaAs thin films used for the PCA fabrication were synthesized by MBE method on GaAs (100) substrate by adjusting the As pressure, As/Ga fluxes ratio, growth/annealing temperatures and annealing time. These parameters crucially affect electro-optical properties of the PCA samples as evidenced by the THz radiation power and time-domain spectroscopy measurements. The annealing temperature of 670 °C was found to be optimal for constructing a PCA possessing high amplitude of the THz radiation over the spectral range up to 1 THz at the resonance of 0.1 THz. The comparison of this PCA with the reference ZnTe crystal reveals a 2-fold increase in THz power. Furthermore, this antenna attains a 1.5-, 3-, and 2-fold increase in THz power, photocurrent efficiency, and actuating dc BV, as compared with the commercial ZOMEGA antenna. These results pave the way towards the creation of highly efficient LT-GaAs-based PCAs.

DOI: 10.1016/j.materresbull.2019.110688