2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008

Preparation, thermal stability and electrical transport properties of vaesite, NiS2

Authors: H.M. Ferreira; E.B Lopes; J.F. Malta; L.M. Ferreira.; M.H Casimiro; L. Santos; M.F.C Pereira; A.P. Gonçalves

Ref.: PeerJ 7 (2019)

Abstract: Vaesite, a nickel chalcogenide with NiS2 formula, has been synthetized and studied by theoretical and experimental methods. NiS2 was prepared by solid-state reaction under vacuum and densified by hot-pressing, at different consolidation conditions. Dense single-phase pellets (relative densities >94%) were obtained, without significant lattice distortions for different hot-pressing conditions. The thermal stability of NiS2 was studied by thermogravimetric analysis. Both as-synthetized and hot-pressed NiS2 have a single phase nature, although some hot-pressed samples had traces of the sulfur deficient phase, Ni1-xS (<1%vol), due to the strong desulfurization at T > 340ºC. The electronic band structure and density of states were calculated by Density Functional Theory (DFT), indicating a metallic behavior. However, the electronic transport measurements showed p-type semiconductivity for bulk NiS2, verifying its characteristic behavior has a Mott insulator. The consolidation conditions strongly influence the electronic properties, with the best room-temperature Seebeck coefficient, electrical resistivity and power factor being 182µVK-1, 2257μΩm and 14.1µWK-2m-1, respectively, pointing this compound as a good starting point for a new family of thermoelectric materials.

DOI: 10.7287/peerj.preprints.27825v1